Hematopoietic Stem Cells Count and Remember Self-Renewal Divisions
نویسندگان
چکیده
The ability of cells to count and remember their divisions could underlie many alterations that occur during development, aging, and disease. We tracked the cumulative divisional history of slow-cycling hematopoietic stem cells (HSCs) throughout adult life. This revealed a fraction of rarely dividing HSCs that contained all the long-term HSC (LT-HSC) activity within the aging HSC compartment. During adult life, this population asynchronously completes four traceable symmetric self-renewal divisions to expand its size before entering a state of dormancy. We show that the mechanism of expansion involves progressively lengthening periods between cell divisions, with long-term regenerative potential lost upon a fifth division. Our data also show that age-related phenotypic changes within the HSC compartment are divisional history dependent. These results suggest that HSCs accumulate discrete memory stages over their divisional history and provide evidence for the role of cellular memory in HSC aging.
منابع مشابه
Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential.
Sustained blood cell production depends on divisions by hematopoietic stem cells (HSCs) that yield both differentiating progeny as well as new HSCs via self-renewal. Differentiating progeny remain capable of self-renewal, but only HSCs sustain self-renewal through successive divisions securely enough to maintain clones that persist life-long. Until recently, the first identified next stage cons...
متن کاملRARγ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation
Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when inactivated [corrected] promotes HSC differentiation. We observe th...
متن کاملIncreased mir33 Expression in Expanded Hematopoietic Stem Cells Cultured on Adipose Stem Cells Feeder layer
Bachgroun: Hematopoietic stem cell derived from umbilical cord blood (UCB) has been used for regenerative medicine in hematological abnormalities. MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development of tissue and cancer. Some studies have shown that miR-33, has a critical role in control of self-renewal cells. He...
متن کاملModeling of replicative senescence in hematopoietic development
Hematopoietic stem cells (HSC) give rise to an enormous number of blood cells throughout our life. In contrast their number of cell divisions preceding senescence is limited underin vitro culture conditions. Here we consider the question whether HSC can rejuvenate indefinitely or if the number of cell divisions is restricted. We have developed a multi-compartmental model for hematopoietic diffe...
متن کاملDivisional History and Hematopoietic Stem Cell Function during Homeostasis
We investigated the homeostatic behavior of hematopoietic stem and progenitor cells (HSPCs) temporally defined according to their divisional histories using an HSPC-specific GFP label-retaining system. We show that homeostatic hematopoietic stem cells (HSCs) lose repopulating potential after limited cell divisions. Once HSCs exit dormancy and accrue divisions, they also progressively lose the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 167 شماره
صفحات -
تاریخ انتشار 2016